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Ablltract-An efficient elastodynamic infinite element capable of propagating Rayleigh waves and
body waves in a homogeneous half-space is presented. The displacement interpolation functions
are presented in convenient explicit forms by formulating the infinite element with respect to a
spherical coordinate system. The infinite integrals appearing in the impedance matrix of an infinite
element are integrated analytically which results in a drastic reduction in computation cost. These
infinite elements are used to model the far field of a homogeneous half-space, while the near field
is modelled by conventional finite elements. The applicability and accuracy of the proposed scheme
are confirmed by solving several examples.

I. INTRODUCTION

The propagation of elastic waves in a semi-infinite media is one of the most interesting
and complicated problems in engineering mechanics and seismology. A clear understanding
of the concepts and development of efficient solution schemes are extremely important in
the soil-structure interaction analysis of complex structures such as nuclear power plants,
off-shore platforms, dams, etc. Since the classical work of Lamb[l], solutions have been
obtained for various loading configurations including buried sources. A review of early
research on this topic has been done by Miklowitz[2], The mixed boundary value problems
associated with vibratory motion of a rigid body have also been considered as reported by
Hadjian et al.[3]. Approximate analytical solutions have been presented for an elastic
foundation vibrating on the surface of an elastic half-space[4] and for the vertical vibrations
of an embedded bar[5]. However, application of analytical solution schemes to most of
the practical elastodynamic problems results in mixed boundary value problems which are
mathematically intractable. Hence during the last two decades several attempts have been
made to present efficient numerical schemes to solve elastodynamic problems of semi­
infinite media.

The finite element method is considered as the most versatile numerical method to
solve complicated problems. Complicated geometries, boundary conditions and material
inhomogeneity can be tackled with relative ease. The usual practice in elastostatics is to
model the semi-infinite media by a large number of finite elements with the boundary of
the mesh placed at a distance where stresses and displacements are negligibly small. Finite
element models of this type, although numerically inefficient, yield accurate results for
elastostatics. However, in elastodynamics, finite element models with such elementary
boundaries violate the radiation phenomenon of propagating waves in the far field and
yield spurious solutions. Waas[6] presented an accurate transmitting boundary for plane
and axisymmetric problems of a layered stratum underlain by a rigid base, which was
later extended to axisymmetric problems under arbitrary loading by Kausel et al.[7]. The
global-local finite element method developed by Muki and Dong[8-10] has been extended
to study elastodynamic problems of an infinite media by Goetschel et al.[ll] and recently
to study elastodynamic problems of a half-space by Avanessian[12]. In the method, the
near field was modelled by conventional finite elements, while the remaining field extending
to infinity was represented by a set of known functions called global functions.

The use of infinite elements to model the far field of homogeneous infinite domain
problems were pioneered by Bettes[13] and Anderson and Ungless[14]. Recently, Rajapakse
and Karasudhi[15-17] presented an elastostatic far-field model for multilayered half-spaces
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and three different finite element algorithms to compute the stiffness of far-field domains
of such multilayered half-spaces. Medina and Penzien[18] presented elastodynamic infinite
elements for homogeneous media, where the integrands of the infinite integrals appearing
in the impedance matrices consist of oscillating functions of different periods. These infinite
integrals were evaluated using an expensive numerical integration scheme. In the present
study, the authors present a two-node elastodynamic infinite element capable ofpropagating
surface waves and body waves. By formulating the infinite elements using a spherical
coordinate system, it is found that the infinite integrals appearing in the impedance matrix
could be integrated analytically, which results in a drastic reduction in computation cost.

2. FINITE ELEMENT FORMULATION

The reference Cartesian (x,Y, z), cylindrical (r, 0, z) and spherical (R, 0, (/» coordinate
systems are as shown in Fig. I. Since problems under consideration are limited to those
having axial symmetry subjected to nonaxisymmetric loading, the applied forces and
displacements could be decomposed into harmonics of the angular coordinate O. The
displacements in r, 0, z directions could be expressed, respectively, as follows:

<rJ <rJ

ur(r, 0, z, t) = L u",(r, z, t) cos nO + L ii",(r, z, t) sin nO,
n-O n-O

<rJ <rJ

uB(r, 0, z, t) = - L uBn(r, z, t) sin nO + L iiBn(r, Z, t) cos nO,
n-O 11-0

u.(r, 0, z, t) = f u... (r, z, t) cos nO + f ii.n(r, z, t) sin nO,
n.O n- 0

(1)

(2)

(3)

where U"', UBn, U... denote symmetric components of displacement, and iirn, iiBno ii.n denote
antisymmetric components ofdisplacement. The most important advantage ofdecomposing
into harmonics of angle 0 is the reduction of the original three-dimensional problem into
a two-dimensional problem. Thus a finite element discretization of a continuum results in
elements of a toroidal shape symmetrical with respect to the z axis. The applied forces in
r, 0 and z directions could also be expanded similarly. Without loss of generality, anti­
symmetric components appearing in eqns (1)-(3) could be dropped, and in what follows,
only symmetric components are considered. Formulation corresponding to antisymmetric
components could be obtained from that of symmetric components by simply replacing
cos nO by sin nO and - sin nO by cos nO.

In a general three-dimensional elastodynamic problem the displacement vector
u(r, 0, z, t) at a point within an element e having m nodes could be approximated by the

Fig. I. Half-space with Cartesian coordinates (x. Y. z). cylindrical coordinates (r. 0, z) and spherical
coordinates (R. 0.1/1).
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harmonics of nodal displacement vector q~(t) as

{

ur(r, 8, z, t)}
u(r, 8, z, t) = uz(r, 8, z, t) = f [N]nq~(t),

ue(r, 8, z, t) n- 0
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(4)

where [N]n is the displacement interpolation function matrix corresponding to the nth
harmonic and defined as

and

[

Nrn cos n8

[N]n = 0
o

o
Nzn cos n8

o
(5)

(6)

(7)

(8)

(9)

{

u),,(t)}
q~n(t) =: ,

u,o:, (t) {
UMt)}

q~(t) =: .
UZ'n(t)

(10)

In eqns (6)-(8), N~n, Nrn and Nf' denote interpolation functions corresponding to the
nth harmonic of displacements in r, 8 and Z directions, respectively, for node i.

The global nodal displacement vector u·(t) of an element e is expressed as

""u·(t) = L [Q]nq~(t),
n-O

where [Q]n is a 3m x 3m matrix defined as

(11)

[

[Q] In

[Q]n =
o

in which

[

COSn8 J..... 0
[Q]ln = ,

o '.
cosn8 mxm

[Q]ln 0 ]
[Q]2n '

[

-sin n8 ]..... 0
[Qhn = .

o "..
-sm n8 mxm

(12)

(13)

The strain vector s of an element can be expressed in terms of the harmonics of nodal
displacements as

""s(r, 8, z, t) = L [B]nq~(t).
n- 0

(14)
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The relationship between the stress vector a and the strain vector 8 can be expressed as

a = [D]8.

In eqn (15), [D] is the constitutive matrix for the material.
The equation of motion for each harmonic n is[17]

(15)

where

(n = 0, ... , (0) (16)

[M]n = ~)M]~,, [C]n = L[C]~,
e

[K]n = L[K]~,, (17)

In eqn (16), [M]m [C]n and [K]n denote mass, damping, and stiffness matrices, and Pn
denotes the equivalent nodal force vector of the system. The element mass matrix [C]~,

stiffness matrix [K]~ and equivalent nodal force vector p~ are given by

[M]~ = 1. p[N]I[N]n r dr dz dO,

[C]~ = 1. c[N]I[N]n r dr dz dO,

[K]~ = 1. [B]I[D] [Bln r dr dz dO,

(18)

(19)

(20)

(21)

In the above equations, p is the material mass density, c is the damping coefficient, fb is
the body force vector, F' is the nodal force vector, v' is the volume of the element, s'
denotes circular nodal lines of element e, and the superscript T denotes the transpose of a
matrix. Application of Fourier transforms to eqn (16) results in

(22)

where qiw) and Pn(w) are the Fourier transforms of the nth harmonic component of the
nodal displacement vector and the equivalent nodal force vector, respectively. Equation
(22) is easier to handle in finite element analysis than eqn (16). A more convenient way of
writing eqn (22) is

(23)

where

(24)

is the nth harmonic of the system impedance matrix. Solution of eqn (23) results in qn(w)
and the time domain solution ~(t) can be obtained subsequently by applying the inverse
.Fourier transform formula

(25)
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3. ELASTODYNAMIC FAR-FIELD BEHAVIOUR

Displacement interpolation functions of an elastodynamic infinite element should
ensure that the displacements, within an element, decrease with distance and consist of
functions representing out-going waves. A logical way of determining the displacement
interpolation functions of an infinite element is to investigate the far-field behaviour of
analytical solutions of representative problems.

Forced torsional oscillation ofa homogeneous half-space represents one of the simplest
wave propagation problems associated with semi-infinite media due to the existence of only
one type of wave. A homogeneous half-space subjected to a dynamic torque distributed
over a circular area is considered. Assuming steady state excitation of the form eiw

" it can
be shown that the only nonvanishing displacement in the 0 direction is given by

(26)

where J.t is the shear modulus, J 1 and J 2 are Bessel functions of the first kind, and ks is the
shear wave number defined as

ks = wjj;iP. (27)

By adopting a suitable contour integration in a complex plane, it can be shown that the
far-field behaviour of Ue is as follows:

(28)

The propagation of elastic waves in an isotropic, homogeneous, semi-infinite solid
under general loading involved more complicated solution procedures[l]. The displacements
in r, 8, 4J directions consist of contributions from Rayleigh waves and body waves. Deri­
vation of exact expressions due to each type of wave at an interior point involves com­
plicated contour integrations and leads to expressions which prevent the realization of the
main objective of obtaining an efficient elastodynamic iD:finite element. Therefore, the far­
field behaviour of Rayleigh and body waves are obtained from existing solutions.

Sezawa[l9] performed a detailed investigation on Rayleigh waves having azimuthal
distribution and presented the following expressions for associated displacements in cylin­
drical coordinates corresponding to the nth harmonic:

. f . k, { 2ps } ol!;,2l(k,r)eleO
' U (r z· w) = _e'01' A - e-PZ - --- e-SZ

,n , , nk; k; +S2 o(k,r) ,

;01' r ( .) i011 A k, { -pz 2ps _so} JIl,,2l(k,r)
e U8n r,z,w = -e n nk; e - k;+S2 e· (k,r) ,

where kp is the pressure wave number defined as

(29)

(30)

(31)

(32)

k, is the Rayleigh wave number determined as the real and positive root from the following
frequency equation

(33)
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and p and s are the following:

P = Jk 2 -k2
r p' (34)

In addition, An is an arbitrary constant, H~) a Bessel function of the third kind or simply
a' Hankel function, the superscript f indicates that the displacements correspond to free
surface waves, and A. is a Lame constant. Medina and Penzien[l8] showed that displace­
ments ut z4" u~ in spherical coordinates corresponding to the propagation of spherically
symmetric body waves can be expressed as .

(35)

(36)

(37)

where h~) is a spherical Bessel function of the third kind, the superscript b denotes that
the displacements correspond to body waves, A R, A~ and A9 are arbitrary constants to be
determined from appropriate boundary conditions.

4. ELASTODYNAMIC INFINITE ELEMENTS

In general elastodynamic problems, each displacement component consists of con­
tributions from surface waves and body waves. Therefore, displacement interpolation
functions of elastodynamic infinite elements capable of representing the far field of semi­
infinite media should consist of terms corresponding to .different possible types of waves.
At the same time, the near field of the half-space is modelled by a finite element mesh of
hemispherical shape having radius Roas shown in Fig. 2 is considered.

4.1. Torsional vibration ofa homogeneous half-space
In torsional vibration of a homogeneous half-space, surface waves do not exist, and

only horizontally polarized shear waves (SH) exist. The R- I far-field behaviour of the
nonvanishing displacement Ue is expressed in eqn (28). However, in the present study, it is
proposed to assume an exponential type of decay instead, so that the infinite integrals
appearing in impedance matrices could be handled conveniently by analytical means. Thus
for symmetric torsional loading which could be expressed by a single harmonic term
(n = 0), the displacement interpolation function NJo for node j could be expressed in terms
of the local coordinates (~,,,) as

(38)

where the coordinate transformation is of the form

(39)

.. r

z

O~j\", II" '........ ~ /
I \ "

\ "\... J
\ ...

~ \ ... , 'I

I 0 \ 0' Node Point 2

'. 7
I __' ~ ... )(r=, ~'

Fig. 2. Two-node elastodynamic infinite element.
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bo = (1 + I)k".
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(40)

(41)

The element satisfies compatibility, completeness and is well defined at zero frequency.
Li,,) is the Lagrange polynomial corresponding to nodej. In evaluating mass and stiffness
matrices, infinite integrals with respect to ecoordinate are of the following form[l7] :

(00 -2bo{ _ ~ _1_Jo R e de - 2bo+ 4b6'

(00 2 _ 2bo{ _ R6 R o _1_Jo R e de - 2bo+ 2b6 + 4b~ .

(42)

(43)

(44)

The remaining integration in " direction is performed numerically using the standard
Gauss quadrature. It is observed that the integrals in " direction are independent of
frequency of excitation and involve simple trigonometric functions and Lagrange poly­
nomials. Thus these integrals can be accurately evaluated by using three integration points
in " direction.

4.2. General vibration ofa homogeneous half-space
The formulation of problems of general vibration of a homogeneous half-space is

based on a spherical coordinate system. In such a situation, each displacement UR, U.

and Ue consists of a surface wave component and a single body wave component. Equations
(29)-(31) present expressions for the Rayleigh wave components. The existence of Bessel
functions of the radial coordinates in those equations results in complicated integrals in
the impedance matrix, for which convenient closed form expressions are unavailable. The
same is true for body wave functions presented in eqns (35)-(37). Thus it is necessary to
adopt a simple and logical approximation to replace these Bessel functions enabling
analytical integration in the infinite direction. While the true decays of H~2)(y) and h~2)(y)

follow r 1/2 and y-I rules, respectively[20), for a large y, it is proposed herein to replace
these Bessel functions for a large argument by exponential functions as follows:

(45)

(46)

Accordingly, eqns (29)-(31) and (35)-(37) are approximated by

(47)

(48)

(49)

(50)

(51)

(52)



650

where

R. K. N. D. RAJAPAKSE AND P. KARASlJDHl

(53)

(54)

(55)

(56)

(57)

and A., Ail, A~ and Ali are arbitrary constants. Equations (47)-(52) would serve as the basis
for the development of displacement interpolation functions of an infinite element in the
present study. A similar far-field model of an exponential decay was proposed by Medina
and Penzien[18] for elastodynamic infinite elements.

Rayleigh wave displacements u!~, u~. and u{. in cylindrical coordinates can be trans­
formed into the corresponding spherical components U-k., u~~ and u,..

Thus each harmonic of displacement in R, ¢, () directions can be written as follows:

(58)

(59)

(60)

Substitution of Rayleigh and body wave components from eqns (47)-(52) into eqns (58)­
(60) show that each displacement expression has two unknown constants. By considering
a two node infinite element as shown in Fig. 2 it is possible to express these two unknown
constants in terms of the displacements and spherical coordinates of the nodes. The
coordinate transformation is the same as that in the torsion problem, i.e. according to
eqns (39) and (40). Consider the nth harmonic of the displacement in R direction. In view
of eqn (58), the following relationship can be established for the two nodes:

(61)

In eqn (61), uk. and uk" are the nth harmonics of the nodal displacements in R direction at
node point 1 and node point 2, respectively, and A'R. and A'R are arbitrary constants
associated with far-field displacements for an element e.

Inverting eqn (61),

(62)

where

(63)

In view of eqn (62) and after substituting appropriate displacements from eqns (47)­
(52), the displacement URn of a point inside an element e can be expressed in terms of its
nodal values as

2

URn = L Nl"(¢, R)UjR.,
i~ I

(64)
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3

Nl"(f/>,R) = L Amj(f/» e-a..R•
m=1

651

(65)

Following the identical procedure, displacements u~ and U", could also be expressed in
terms of the nodal values of the element e as

2

U." = L Nr(f/>, R)ui.pn, (66)
j= 1

2

U/1n = L NJn(f/>, R)utJn, (67)
j-l

where

3

Nt"(f/>,R) = L BmJ{f/» e-b
..

R
, (68)

m-l

3

NJn(f/>, R) = L Cmif/» e-c..R • (69)
m-l

The terms A"", Bmj, Cmj, a_ bm and em are presented explicitly in the Appendix for the
general vibration case.

In evaluating mass and stiffness matrices infinite integrals with respect to R are of the
form[l7]

(k = 0, 1,2). (70)

Since 9m/ is independent of R, integrals in eqn (70) can be easily integrated exactly as
follows:

(71)

(72)

(73)

What remain are integrals in " direction. These can be accurately computed by using the
standard Gauss quadrature formula.

Since the computation of the infinite element impedance matrix is in terms of spherical
coordinates, it is necessary to perform the following transformation before assembling
into the global impedance in terms of cylindrical coordinates:

[s(w)]~ = [A]T[§(w)]~[A], (74)

where [s(w)]~ and [s(w)]: are impedance matrices based on cylindrical and spherical
coordinates, respectively, and [A] is the coordinate transformation matrix from cylindrical
to spherical[l7].

SAS 22:6-F
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5. DISCUSSION OF RESULTS AND CONCLUSIONS

In solving elastodynamic problems using the finite element method, special attention
has to be paid to the dimensions of elements. Previous studies[3, 21] indicate that to
adequately transmit a given frequency through the model, the dimensions ofa finite element
should be kept within a certain limit of the smallest wavelength of the propagating waves.
In the present study, wherever possible, nine-node finite elements with 3 x 3 Gauss quad­
rature are used to model the near field, and the element size is kept within 1/4 of the shear
wavelength.

A rigid circular plate subjected to harmonic torsion is analysed using the mesh shown
in Fig. 3(a) and the results are given in Fig. 3(b). It could be easily seen that the mesh
shown in Fig. 3(a) gives reasonably accurate results within the dimensionless frequency
range ~3.0. However, as the frequency increases, results deviate more from the analytical
solution, since the dimensions of some elements are exceeding the allowable limit specified
previously. The mesh shown in Fig. 3(c), which consists of finite elements satisfying the
size requirement throughout the dimensionless frequency range ~.O, gives very accurate
results as shown by Fig. 3(d). The torsional response of an embedded hemisphere is
analysed by using the mesh shown in Fig. 4(a). By keeping R o= 1.75a, all finite elements
satisfy the size requirement prescribed previously and the results are found to be very
accurate as shown by Fig. 4(b). If R o = 2.2a, then for high frequencies results are found

2 S 4 II

D\menlionlll, Frequency, ao =aka

( b)(0 )

Rigid Circular Plate

Ul

to....u'-I.O
0<)0

::..
!i 0.11

o

A Iwt ILT Iwt
wT' • -T o'

~
O'wt

20
/J r,

z

z

(c)

1.11

to
;}"o

0<)0

::..
!io.ll

o

~
Tlllwt

-t -to
.P,/J 0

Z
-I..

I 2 S 4 II

DiIMnsionIIIs Frequency, ao=ok,
(d)

- Analytical Solution, Luco [22]
• •• Present Study

Fig. 3. Torsional compliance, CT= liT/To. of rigid circular plate bonded to homogeneous half­
space and subjected to harmonic torque; element mesh (a) giving results in (b) and element mesh

(c) giving results in (d).
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Dimensionless Frequency, 00 " Oks

6

6

~
~r

z

42a

1.5

( b)

I-
U 1.0

"'0

~
~ 0.5

I-
U 1.0

"'0
~
~ 0.5

Embedded Rigid
Hemisphere

(0)
z

Dimenlionless Frequency, 00 II Oks

(c)

Analytical Solution, Luco [22]

• •• Pre.ent Study

Fig. 4. Torsional compliance. C T = AT/To. of rigid hemisphere embedded in homogeneous half­
space.

to be deviating slightly from the analytical solution, since dimensions of some finite
elements exceed the allowable maximum dimension specified previously.

Next the two-node elastodynamic infinite element is used to solve symmetric and
asymmetric vibration problems associated with a rigid circular plate. The present two­
node elastodynamic infinite element violates compatibility and is undefined at zero
frequency. However, for zero frequency, the authors have presented three different
simple and highly accurate algorithms[16, 17]. In a separate study[17], various mesh
configurations have been studied in detail by solving the harmonic uniform vertical pressure
problem considered by Sung[23]. Figures 5 and 6 show the results obtained for vertical,
lateral and rocking vibration problems. The analytical results[24, 25] are based on the
smooth footing assumption. However, in finite element analysis, one obtains perfect
bonding between the plate and half-space unless special elements are employed to simulate
a smooth interface. Nevertheless, the plate compliances under smooth and rough interface
conditions are reasonably close to ~ch other as seen in Figs. 5 and 6. For low frequencies
(00 < 0.75) results were obtained by placing the finite element boundary at a distance
equal to 6 times the plate radius. However, this does not cause any penalty on computational
cost since the allowable maximum dimensions of the near-field elements are quite large for
low frequencies.

The main advantages of the infinite elements developed are that the displacement
shape functions are presented explicitly and that the infinite integrals appearing in the
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Rigid Circular Platt
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I

..... 1.01---__ R.

uo.
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::l 0.1l.,.

z
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----.T r

, /l,L'
Z

R.

o

'a. 1.0.-......__

U
CI
::l 0.1l.,.

z
(e) (d)

- Analytical Solution by Luco ancI Wtltmam [24]
Auuming Smooth Contact

• • • Present Study (fully bonded plate)

Fig. 5. Vertical compliance, Cp = I1pl Po, of rigid circular plate bonded to homogeneous half-space
(v = 113) and subjected to symmetrical vertical load; element mesh (a) giving results in (b), and

element mesh (c) giving results in (d).

impedance matrix of an infinite element are easily integrated by analytical means. The
latter makes the element computationally very attractive and extremely accurate. These
factors make the present element more efficient than those reported in Ref. [18].

A main purpose of this study is to develop efficient infinite elements to model the
elastic far field ofa homogeneous half-space. The developed algorithm has almost unlimited
capacity to handle any vibration problems such as soil-structure interaction, crack, scat­
tering problems, etc. In order to enhance the computational efficiency further, the authors
are refining the algorithm by using a certain number of horizontal infinite elements near
the surface of the half-space. The concept is similar to that employed very successfully in
elastostatic problems[16]. The dynamic results obtained so far for problems of a cylindrical
body partially embedded in the half-space have been very promising and will appear in a
future publication.

In conclusion, simple and efficient elastodynamic elements capable of propagating
surface and body waves are presented in this study to model the elastic far field of a
homogeneous half-space. The applicability and accuracy of the elements are confirmed by
numerical solutions.
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2.0

2.0

1.0

Di"""sionlelS Frtquency, 0 0 =oks

(c)

1.0

Dimensionless Frequency, 0 0 = oks

( b)

o

o

~ 1.5
I

.....
ol.Ot---_~

(.)

I:)

::s... 0.5
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~
I 1.5

N-

Rigid Circular Plat.

(0)

z

--Analytical Solution by v.letlGl and W.i [25)
AllUIIlino Smooth Contact

• • • Prllent Study (fully band.d plat.)

Fig. 6. Rigid circular plate bonded to homogeneous half-space (v = 1/3); (a) element mesh, (b)
horizontal compliance Co and (c) rocking compliance CM •
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APPENDIX

The following are associated with the displacement shape functions:

(JR)II = e-(I+i)k,Roli••1 {<P. cos t/JI-OC. sin t/JI) e-pROco••, + (OC.A , sin t/J1-P.A2 cos t/J,) e-,Roc...,}, (75a)

(JR)12 = (JRb = e-(I+i)k,Ro, (75b)

(JRh, = e-(I+I)k,Rolin., {<P. cos t/J2-OC. sin t/J2) e-PRo"'·'+(OC.AI sin t/J2-P.A2 cos t/J2) e-,Ro.... ,}, (75c)

(J.) II =e-( I+11.t,Roli••, {-(oc. cos t/J I+ P. sin t/J I) e-pRo..'.' + (OC.A I cos t/J 1+ P.A2 sin t/J I) e-,Roco•• ,}, (76a)

(J.)\2 = (J.b = e-(I+ilk,Ro, (76b)

(J.h, = e-ll+ilk,Ro.i••, {-(oc. cos t/J2+P. sin t/J2) e-pRO"'.' + (OC.A, cos t/J2+P.A2 sin t/J2) e-,Roc...,}, (76c)

(JO) II = _l'.(e-pRocOl.'_A, e-'JlocOl.') e-l I+i)k,Ro.in., , (77a)

(J0)\2 = (JO)22 =e-(I+')k,Ro, (77b)

(Joh, = _l'.(e-pRoco··'_AI e-sRo....,) e-(I+i1k,Ro.i••" (77c)

where t/J, and t/J2 are values of t/J at node points I and 2, respectively, while other symbols are as previously
defined. The terms Anoj' Bmj, Cnoj' am, b.. and Cm involved in eqns (65), (68) and (69) are as follows:

A ,,(t/J) = [(JRb/~~I<P. cos t/J-a.. sin t/J),

A2M) = [(JJlh2/~~](OC.A, sin t/J-P.A2 cos t/J),

All = -(JR)21/~~,

Adt/J) = [-(JR)\2/~~](P. cos t/J-a.. sin q,),

A22(t/J) = [-(JR)d~~](OC.AI sin t/J-P.A2 cos q,),

An = (JR)II/~~,

B,M) = [-(J.)22/~~](oc. cos t/J+P. sin t/J),

B2I (t/J) = [(J.)22/~~](OC.AI cos t/J+P.A2 sin q,),

B l1 = -(J.htl~.. ,

B\2(t/J) = [(J.)"/~"](oc. cos q,+P. sinq,),

B22(t/J) = [-(J.)\2/~"](OC.AI cos q,+P.A2 sin t/J),

B32 = (J.)II/~",

CII = [-(JO)22/~~ll'.,

C2I = [(Jo)"j~~ll'.A"

ClI = -(Job/~'o,

(78a)

(78b)

(78c)

(78d)

(78e)

(78f)

(79a)

(79b)

(79c)

(79d)

(7ge)

(79f)

(80a)

(80b)

(8Oc)
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CIl = [(Jo) Il/A;]y.,

C22 = [-(Jo)'2/A~]y.A."

C32 = (Jo),J!Ai,

0, = (p cos t/!+k, sin t/!+ik, sin t/!),

02 = (s cos t/!+k, sin t/!+ik, sin t/!),

03 = (k,+ik,),

c, = (p cos t/!+k, sin t/!+ik, sin t/!),

C2 = (s cos t/!+k, sin t/!+ik, sin t/!),

c) = (k,+ik,),

in which the symbols A~, A~ and A~ are as follows:

A~ = (JR)IMRb-(JR)u(J.b,

A~ = (J~)I M~h2 -(J~)Il(J~hh

A~ = (Jo) 11 (JSh2 - (Js) Il(Jsh I-
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(8Od)

(80e)

(80f)

(8Ia)

(8Ib)

(8Ic)

(82a)

(82b)

(82c)

(83a)

(83b)

(83c)

(84a)

(84b)

(84c)


